On a Generalization of the Midpoint Rule*

By Franz Stetter

I. Introduction. A modified midpoint rule for the approximate calculation of weighted integrals $\int_{a}^{b} p(x) f(x) d x$, where $p(x) \geqq 0$ is the weight function, has been recently proposed by Jagermann [1]. Although this formula reduces to the common midpoint rule in the particular case $p(x) \equiv 1$, in the general case of arbitrary weight functions the error does not vanish for all polynomials $\alpha+\beta x$. The purpose of this paper is to generalize the midpoint rule such that the formula is exact for polynomials of first degree and arbitrary weight function $p(x) \geqq 0$.

In view of practical calculations, the repeated midpoint rule is very useful because of its simplicity and small round-off error. Moreover, an error estimation does not require higher derivatives whose bounds are often not easy to obtain. For a comparison of the repeated midpoint rule to both Gaussian quadratures and "best" quadratures we refer to Stroud and Secrest [2].
II. Generalized Midpoint Rule. We assume that the weight function $p(x)$ does not identically vanish on any subinterval of $[a, b]$. Let

$$
\begin{equation*}
y=H(x)=\int_{a}^{x} p(t) d t, \quad H(b)=1 \tag{1}
\end{equation*}
$$

and let the inverse function of H (which exists because $H(x)$ is monotonic increasing) be denoted by L :

$$
\begin{equation*}
x=L(y)=H^{-1}(y) . \tag{2}
\end{equation*}
$$

For $i=0,1, \cdots, N-1,(N \geqq 1)$ we put

$$
\begin{equation*}
a_{i}=N \int_{i / N}^{(i+1) / N} L(y) d y=N \int_{x_{i}}^{x_{i+1}} t p(t) d t \tag{3}
\end{equation*}
$$

where $x_{i}=L(i / N)$. We now define the generalized rule by:

$$
\begin{equation*}
\int_{a}^{b} p(x) f(x) d x=\frac{1}{N} \sum_{i=0}^{N-1} f\left(a_{i}\right)+R_{N} . \tag{4}
\end{equation*}
$$

Assuming $f \in C^{2}[a, b]$ the error R_{N} can be expressed by

$$
\begin{equation*}
R_{N}=\frac{1}{2}\left(\int_{a}^{b} x^{2} p(x) d x-\frac{1}{N} \sum_{i=0}^{N-1} a_{i}{ }^{2}\right) f^{\prime \prime}(\xi)=\frac{1}{2} C_{N} f^{\prime \prime}(\xi), \quad a<\xi<b \tag{5}
\end{equation*}
$$

Proof. Dividing $[a, b]$ into the subintervals $\left[x_{i}, x_{i+1}\right]$ we obtain for the error R_{N}

$$
R_{N}=\sum_{i=0}^{N-1}\left\{\int_{x_{i}}^{x_{i+1}} p(x) f(x) d x-\frac{1}{N} f\left(a_{i}\right)\right\}
$$

[^0]By the Taylor series

$$
f(x)=f\left(a_{i}\right)+\left(x-a_{i}\right) f^{\prime}\left(a_{i}\right)+\frac{1}{2}\left(x-a_{i}\right)^{2} f^{\prime \prime}\left(\xi_{i}\right)
$$

and by (3) we get the expression

$$
\begin{equation*}
R_{N}=\frac{1}{2} \sum_{i=0}^{N-1}\left\{\int_{x_{i}}^{x_{i+1}}\left(x-a_{i}\right)^{2} p(x) f^{\prime \prime}\left(\xi_{i}\right) d x\right\} \tag{6}
\end{equation*}
$$

$$
=\frac{1}{2}\left(\sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}}\left(x-a_{i}\right)^{2} p(x) d x\right) f^{\prime \prime}(\xi) .
$$

Furthermore, it follows from (3) that

$$
\begin{align*}
\sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}}\left(x-a_{i}\right)^{2} p(x) d x & =\sum_{i=0}^{N-1}\left\{\int_{x_{i}}^{x_{i+1}} x^{2} p(x) d x-\frac{2}{N} a_{i}{ }^{2}+\frac{1}{N} a_{i}{ }^{2}\right\} \tag{7}\\
& =\int_{a}^{b} x^{2} p(x) d x-\frac{1}{N} \sum_{i=0}^{N-1} a_{i}{ }^{2} .
\end{align*}
$$

(6) and (7) yield the bound (5).
C_{N} can also be interpreted as the integration error of the function $f=x^{2}$. It may be noted that Jagermann's modification of the midpoint rule is obtained if the integral $N \int_{i / N}^{(i+1) / N} L(y) d y$ in (3) is approximated by the (ordinary) midpoint rule, i.e., by $L((2 i+1) / 2 N)$.

III. Examples.

(a) For $p(x) \equiv 1$ and $a=0, b=1$, we obtain $a_{i}=(2 i+1) / 2 N$ and, from (5), $C_{N}=1 / 12 N^{2}$ in accordance with the common midpoint rule.
(b) Let $p(x)=\pi^{-1}\left(1-x^{2}\right)^{-1 / 2}$ and $a=-1, b=1$. From $L(y)=-\cos \pi y$ it immediately follows that:

$$
a_{i}=-\frac{2 N}{\pi} \sin \frac{\pi}{2 N} \cos \frac{2 i+1}{2 N} \pi \quad(i=0, \cdots, N-1)
$$

and

$$
\begin{aligned}
C_{N}=\frac{1}{2}-\frac{1}{N} \sum_{i=0}^{N-1} a_{i}{ }^{2} & =\frac{1}{2} \quad \text { for } N=1 \\
& =\frac{1}{2}-\frac{2 N^{2}}{\pi^{2}} \sin ^{2} \frac{\pi}{2 N} \quad \text { for } N \geqq 2 .
\end{aligned}
$$

Obviously, $C_{N}=O\left(N^{-2}\right)$.
(c) For the infinite interval $a=0, b=\infty$ and the weight function $p(x)=e^{-x}$ we get from $L(y)=-\log (1-y)$:

$$
\begin{gathered}
a_{N-1}=1+\log N \\
a_{i}=1+\log N-(N-i-1) \log (N-i-1)-(N-i) \log (N-i)
\end{gathered}
$$

for $i=0,1, \cdots, N-2$. Numerically computed values of C_{N}

N	1	2	5	10	20	50
C_{N}	1.000	0.520	0.213	0.108	0.054	0.022

show that C_{N} goes to 0 with the order $O\left(N^{-1}\right)$.

Applied Mathematics Division Argonne National Laboratory
Argonne, Illinois 60439

1. D. Jagermann, "Investigation of a modified mid-point quadrature formula," Math. Comp., v. 20, 1966, pp. 79-89. MR 32 \#8499.
2. A. H. Stroud \& D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N. J., 1966. MR 34 \#2185.

[^0]: Received October 30, 1967.

 * Work performed under the auspices of the United States Atomic Energy Commission.

